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Fig. 1: Predicting Spatial Task Affordance. (left) Existing vision and language models (VLMs) are able to localize seen objects related
to tasks within an image (colored regions) or reason about tasks through vision-language similarity (colored bars). However, existing
VLMs are unable to predict into the 3D space outside of the given image itself. (right) We propose augmenting VLMs to make spatial
predictions for where given tasks likely take place relative to an egocentric image. We refer to this region of a task’s likely locations as

the task’s spatial affordance.

Abstract— Vision-Language Models (VLMs) have shown
great success as foundational models for downstream vision
and natural language applications in a variety of domains.
However, these models are limited to reasoning over objects
and actions currently visible on the image plane. We present
a spatial extension to the VLM, which leverages spatially-
localized egocentric video demonstrations to augment VLMs in
two ways — through understanding spatial task-affordances, i.e.
where an agent must be for the task to physically take place, and
the localization of that task relative to the egocentric viewer.
We show our approach outperforms the baseline of using a
VLM to map similarity of a task’s description over a set of
location-tagged images. Our approach has less error both on
predicting where a task may take place and on predicting what
tasks are likely to happen at the current location. The resulting
representation will enable robots to use egocentric sensing to
navigate to, or around, physical regions of interest for novel
tasks specified in natural language.

I. INTRODUCTION

Understanding spatial affordances, i.e., the region of space
in which a task can be accomplished in an environment, is
a vital capability in any robotic or Al system that seeks to
model or imitate how humans use the environment around
them. Such affordances may be naturally learned from human
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demonstrations. Egocentric video demonstrations, i.e. first-
person video captured from a head-mounted camera, is
especially well-suited for learning spatial affordances as
it simultaneously captures where a person is going and
what they are seeing and using as they move through their
environment [1]. In particular, recent large data collection
efforts such as Ego4D [2] and EgoExo4D [3] provide high
quality egocentric data with each frame localized in space
together with annotations capturing narrative descriptions of
the tasks being accomplished at each stage in the video.

Recent work has proposed systems that can provide high-
quality reasoning about object’s affordances, that is how
objects can be used for tasks. For example, CLIP-Fields [4]
allow robots to reason over semantic maps to find 3D
locations of objects for tasks such as identifying the location
of a microwave when given the task “warm up my lunch.”
However, these kinds of systems rely on access to a full 3D
model at inference time (e.g., through a NeRF [5] or 3D
point cloud).

Here, we define a task’s spatial affordance as the area in
free space where a person would stand in order to perform
the task. This type of knowledge is important for robots in
human environments, as it will help them better understand
where people will likely be as they are doing tasks. We
consider the problem of predicting 3D regions of spatial
affordances from a single, egocentric image.



We conceptualize this problem as first understanding the
scene context from an image, and then combining this
context with a given task in order to predict the likely region
where a person may be. We propose a neural-network based
approach which solves both problems simultaneously with
an encoder-decoder style architecture. The resulting network
is trained on a large set of tasks from a variety of cooking
activities and kitchen environments and is able to predict new
spatial task affordances given natural language descriptions.

Our problem is closely related to the use of Vision-
Language Models (VLMs) in robotics. Figure [I{left), out-
lines common uses of VLMs in robotics, such as segmenting
objects a robot may interact with for its task [6], [7], or
measuring the similarity of a current ego image with a task
the robot is interested in [8], [9]. In contrast, our proposed
framework provides a new capability: Given a single ego-
centric image, rather than identifying items or measuring
similarities, our model produces spatial 3D regions of task’s
location Figure [T{right).

When deployed to new tasks and views in known environ-
ments (seen in training), our resulting system outperforms
baselines, even when baselines are provided with many
images (entire demonstration) at inference time rather than
the single image used in our approach. We build on the
proposed spatial task affordance predictions to introduce the
concept of a task obstacle. These are regions over sets of
related tasks which can be used to guide robot avoidance in
human environments.

In summary, our main contributions are:

o An extension of VLMs to predict 3D spatial regions
representing task location likelihood.

« Using the EgoEx04D dataset to learn spatial affordances
from egocentric human demonstrations in real kitchen
environments.

e A training approach which allows for optimizing a
model on spatial demonstrations of tasks on views
across the full environment.

« Task obstacles to enable robots to avoid potential colli-
sions in human environments.

II. RELATED WORK

Deep learning has proven to be a powerful paradigm
for understanding scene geometry from images, both in
multi-image scene reconstruction as seen in NeRFs [5],
and single-frame third-person body pose prediction [10],
first-person navigation [11]-[13], and first-person body pose
prediction [14] tasks. Beyond geometry, semantic reasoning
through natural language over images has recently been en-
abled via Vision-Language Models (VLM) such as CLIP [8],
BLIP [15], and EgoVLP [16]. However, these models on
their own have limited spatial understanding [17].

Egocentric vision is a common representation for robots
due to the prevalence of on-board cameras. As such, methods
have been developed to leverage egocentric data for robotic
tasks such as identifying activities [18], shaping behav-
ior [19], and inferring goal locations [20]. To support these
applications, specialized large-scale datasets of egocentric

human demonstrations have been proposed, such as the
Ego4D dataset [2], and the EgoExo4D dataset [3].

Recent work seeks to align geometry and semantics to
enable robust navigation of mobile agents. Reinforcement
learning approaches seek to understand how to reason
about the environment given a pre-defined task from a
robot’s perspective [21]-[27]. Vision-Language Navigation
approaches [28] seek enable robot navigation in human
environments, but focus on objects as opposed to tasks.
CLIP has been integrated into mobile robot policies to allow
natural language task augmentation [27], [29], [30]. VLMs
have also been used to create flexible semantic maps a
mobile robot can query using natural language, such as
VLMaps [31], NLMap-SayCan [32], CLIP-Fields [4], and
3D-LLMs [33], using e.g. an RRT [34].

A closely related problem to spatial affordances (where a
person stands for a task) is manipulation affordances (how to
manipulate an object for a task). Manipulation affordances
can be estimated from image segmentation [6], [35], from 3D
object or scene representations [36], [37], or learned end-
to-end [38]. Affordances can also be learned from human
demonstration as in the Vision-Robotics Bridge [39] and its
text-based extension [40] which learn to represent image-
based affordances from egocentric human demonstrations,
where affordance is defined as contact points and trajectories
for robots to interact. R3M [9] uses egocentric human
demonstrations to create a semantic representation well-
suited as a foundational model for downstream robot tasks.

III. SIMULTANEOUS LOCALIZATION AND
AFFORDANCE PREDICTION

Given an egocentric image and a natural language dis-
tribution of a task (e.g., “turn on the stove”), our goal is
to predict the region where someone would likely be when
performing this task. We assume that tasks, images, and
viewpoints are new and unseen during training. However,
the environment is expected to either be seen in training
or adapted to via fine tuning (Sec [V-D). We conceptualize
this task affordance prediction as two related aims: first,
hypothesize the environmental context induced by the image,
and second, predict the region in which someone may go
within this hypothesized environment to perform the given
task. We refer to this region of free space where a task should
take place as the task’s “spatial affordance,” and the end-
to-end prediction of a task’s relative region given a single
egocentric image as simultaneous localization and affordance
prediction.

A. Problem Formulation

Formally, given a first-person image I and a natural
language task query q, we would like to predict a distribution
of positions where the task is performed, D, that matches the
true human distribution, D, in environment &:

D(q,1) = T(D(q,€)) (1)
Importantly, because the image I is egocentric, each image
carries with it an implied location within the camera’s
environment, explicitly represented by the transform 7.
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Fig. 2: Model Architecture. Given video demonstration, V, of an activity containing several tasks, our model is trained over pairs
of tasks and images selected from different times in the video. For example, a task at frame “A” is encoded via a (frozen) pretrained
language model E;, and combined with an encoding of an image from frame “B”. Images are encoded with a pretrained vision model
Ev (unfrozen). This pair of encodings is finally passed to an affordance network Ay which predicts an region where task “B” should take
place relative to frame “A”. The loss function Lr rectifies this position and compares it to the ground truth global position from task “A”.

Data Assumptions We assume we have a dataset of
videos V over environments &; each video comprised of a
collection of images Z, with corresponding tasks 7, and the
corresponding pose where each image was observed X'. We
refer to the associated collection as an annotated, localized
egocentric video V € V. Formally, V = (X, T,Z), where
elements of each set X, Z, 7 are indexed by a frame 4
linking the three sets together in time. In practice, such a
dataset could be defined with narrated demonstrations from
a subject wearing a first person camera with Z consisting of
images from the camera, 7 consisting of tasks gathered from
the self-narration, and & consisting of poses determined by
a post-collection reconstruction process such as SLAM [41].

B. Model Architecture

We model the affordance prediction task with an encoder-

decoder style deep neural network architecture, first en-
coding the egocentric image as a vector capturing the
image’s semantics, and then convert this encoding into a
task-conditioned prediction of the given task’s performance
(Figure [2).
Environmental Context and Image Localization To en-
code the egocentric image at the robot’s current viewpoint I,
we can use pre-trained, foundational image models that have
demonstrated a strong ability to capture the image’s semantic
information. However, such image encoding models typically
capture the semantics of what is being viewed in the image
rather than capture information about what to expect of the
(unseen) scene surrounding the image. To address this, we
fine-tune the weights of the image model, which is intended
to capture the expected context given the image. The image
encoder, Fy, is a large foundation model pre-trained on a
large variety of images (such as CLIP [8]), and will be fine-
tuned on a dataset of images related to spatial affordance
prediction contained in the video dataset ). That is

ev = Ey(I). 2

Task Encoding Unlike images, which need additional
learned context, tasks can be encoded directly with pretrained
language models such as CLIP [8]. A task query is tokenized
then encoded as a vector with a frozen, pre-trained language
encoder F :

ee = Fr(q) 3)

Unlike Ey, Eyp is frozen during training, as learning the
context on just the image information allows the network
to learn environmental context separate from downstream
language task queries.

Affordance Prediction Because a person may naturally
move around as they accomplish a given task, each task may
have a small range of positions where it was seen accom-
plished. We therefore represent the observed distribution of
a task as being a normal distribution:

Ni (e, X¢) = D(t) %)

capturing the likely location for a person for that task across
all the frames the task occurs.

The encoding vectors e, and ey represent what is ex-
pected to be around the viewer, and what the goal task is,
respectively. Taken together, this should provide sufficient
information for spatial affordance prediction. An affordance
prediction network, Ay, is trained which takes as input these
encoding vectors and produces a final 3D task region:

Ag(ev,ee) =N (o, Xo) )

whose mean is a 3D position and with 2D uncertainty
constrained to lie along the ground plane with zero covari-
ance (isotropic). The model parameters 6 are learned across
environments and activities.

C. Loss Function
We can directly optimize Equation [I] by minimizing the
difference in distributions. To ensure the predicted regions N



Kitchen Activity Time Tasks
FAIR Noodles 9 min 34
GTech Noodles 20 min 59
IIT-H-A Omelette 3 min 47
IIIT-H-B Tomato Salad 2 min 19
IndianaU Asian Salad 13 min 52
UMN-A Scrambled Eggs 10 min 33
UMN-B Scrambled Eggs 6 min 22
SFU-A Scrambled Eggs 7 min 16
SFU-B Coffee Latte 4 min 14
UAndes Omelette 15 min 23
UPenn Tomato Salad 8 min 37
UTokyo Omelette 14 min 66
12 Unique 6 Unique 110 min 422

TABLE I: Kitchen Activities and Tasks

are metrically meaningful, we use the Fréchet Distance, dp,
between the predicted distribution and the canonical target
task distribution. Because affordance predictions happen in
an egocentric frame, the target task region must be rectified
before the distance loss function can be computed. We align
the target task in the coordinate frame of the query image
through the transform Ry, and compute the error over all
image-task pairs as follows:

'CR = Z ZdF(Rx(A/‘t)aN)’ (6)

x,IeV teT

computed over all videos V. The training scheme is shown
alongside the architecture in Figure 2]

IV. EXPERIMENTAL SETUP
A. Training

We curated a dataset consisting of egocentric videos of
people accomplishing cooking tasks from the EgoExo4D
dataset [3], where each task is a keystep from a larger
cooking activity. For example, the activity “Making Noodles”
includes tasks such as “Wipe hands with a kitchen towel”
and “Add soy sauce to the noodles in the skillet.” The
resulting dataset contains nearly two hours of localized
video recordings gathered from across 12 unique kitchens
for a total of 422 different instances of task/environment
combinations (Table ). An LLM (GPT-4 [42]) was used
during training to augment each task description with several
rephrasings which preserve the meaning of the original task.
When computing keysteps for training we only consider
frames where the camera has a velocity below 0.1 m/s. To
stabilize our predictions in our egocentric coordinate frame,
we also correct for pitch and roll of the camera.

For the pretrained vision and language encoding networks,
Ey and Ep, we used pretrained CLIP [8] as it has been
shown successful in a wide variety of language tasks. The
affordance predictor network Ay is a 4-layer MLP with 1M
trainable parameters, each with layer normalization.

We randomly split the dataset into training and testing
tasks (80%/20%), and a training and testing image set
(consecutive 10% held out), and train all models on a single
V100 GPU and 10 CPU cores. Our base model was trained

for 150 epochs in 7 hours of training. Our fine-tuned models
are trained on all image frames of the single scene for
25 epochs, taking less than half an hour of training. The
resulting models are tested in these environments on the
unseen tasks.

B. Baseline: Whole Scene VLMs

Similar to our proposed approach, closely related work
such as CLIP-Fields [4], VLMaps [31], and 3D-LLM [33],
all build on CLIP encodings to represent semantic image
information. However, unlike our proposed approach, these
prior works require access to the entire 3D model of the
scene at inference time. As a proxy for these types of
whole-scene affordance prediction techniques, we introduce
a baseline nearest-neighbor based approach which leverages
pretrained CLIP as a task-similarity measure that can be
applied over all images captured per scene in the dataset (no
test/train split). This baseline approach, referred to as CLIP-
NN, takes a CLIP text encoding of the task description q,
and a CLIP image encoding of every image in the scene
V. We can predict the best fitting image as the frame ¢ for
which the cosine encoding similarity between the egocentric
image and the task description text is maximized. The task
position prediction is then x., the corresponding position
of the viewer at time c. That is, we predict the location
where the view best matches the task as evaluated by the
CLIP encoding similarity. To compute the region uncertainty,
we compute per-task uncertainty from all task positions, and
average over all tasks in V.

V. RESULTS

A. Affordance Grounding

An immediate limitation of the baseline, and similar
approaches based directly on CLIP descriptions, is that CLIP
only captures the content of the image itself, rather than
information about the kinds of tasks and activities that the
scene affords. This affordance grounding capability can be
directly measured through a multiple-choice paradigm, where
the model is used to predict which of three randomly selected
task queries is most likely to take place at a given image,
either the highest CLIP similarity for the baseline, or the
lowest predicted distance for our method. Because this task
does not involve any spatial prediction or out-of-view tasks, it
focuses just on the model’s understanding of the connection
between task descriptions and an image’s affordance.

The CLIP-NN baseline only does slightly better than
random guessing (37%), while our model has nearly double
the performance of the baseline (63%) as seen in Figure
We hypothesize this is due to CLIP encodings capturing
the content of the image, rather than the activities afforded
by the scene viewed from the image. Our model’s ability
to capture affordances comes in part by fine-tuning the
vision encoder Ey . Retraining with a frozen Ey (Original
CLIP), the model still outperforms the baseline, but by a less
significant margin.



Kitchen Baseline dr |  Ours (Evfrozen) dr | Ours dp |
FAIR 044 + 0.4 0.34 £ 0.1 0.27 £ 0.1
GTech 1.56 £ 0.9 052 +04 041 = 0.3
IIT-H-A 044 £ 0.2 0.25 £ 0.1 0.21 + 0.1
IIIT-H-B 1.11 £ 1.2 0.54 £ 0.7 0.52 = 0.6
IndianaU 0.44 + 0.3 0.56 £ 0.4 0.46 £ 0.3
UMN-A 0.55+04 0.39 £0.2 0.38 + 0.2
UMN-B 0.51 £0.5 048 £ 0.4 0.40 = 0.4
SFU-A 0.59 £0.3 034 £0.2 0.25 = 0.2
SFU-B 0.84 £ 0.2 047 £ 0.2 0.52 £ 04
UAndes 0.70 £ 0.5 0.68 £ 0.4 0.67 = 0.5
UPenn 0.44 £ 0.2 0.35+£0.3 0.28 + 0.3
UTokyo 044 £ 0.5 024 £0.2 0.18 + 0.1
Avg Err: 0.68 + 0.6 042 +0.3 0.36 + 0.3

TABLE II: Task Region Localization Error, dr(m)
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Fig. 3: Affordance grounding. When predicting from which in a
set of three tasks is the most likely for a given image, the baseline
(orange) performs similarly to random guessing (dashed line).
Our models with a frozen language encoder (green) significantly
outperforms the baseline, and our model with an unfrozen encoder
(blue) nearly doubles the baseline.

B. Task Localization

When compared to the baseline, our approach is also
significantly more accurate at predicting where a given task
will take place relative to an arbitrary egocentric viewpoint
(Table [I). Task localization allows the model to interface
with egocentric navigation techniques such as PointNav [21]
and other egocentric robotic works [23], allowing the robot
to accomplish tasks such as moving to where you need to
“heat the food.” Our approach shows statistically significant
gain over the baseline [t(82) = 4.683, p <0.001] (Figure E]
left of dashed line) even when testing on both unseen tasks
from held-out viewpoints.

The right side Figure [4] shows two additional breakdowns
of the task localization results tested on either only known
images or known tasks. When tested on seen images and
unseen tasks, the performance is nearly the same. When
tested on seen tasks and unseen images, our model has almost
no error. Taken together, these two results demonstrate the
quality of our model’s ability to localize within a scene.

C. Rephrasing Stability

Because queries to our model arrive as natural language,
the model must be able to make valid predictions across dif-
ferent phrasings of the same task (e.g., “heat the skillet” and

I
U o W
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dp Error (m)
[N
°

e e
o W

}I—Fm ® 0 000

Ours
(Image Holdout)

Ours Ours
(Task+Image Holdout) (Task Holdout)

Baseline

Fig. 4: Task localization error. When predicting the region of a
given task, the baseline approach does well in some cases (median
error of 0.48m) but has many cases with high error or significant
outliers. Our approach has significantly lower error than the baseline
when testing on unseen images (red), unseen tasks (green), or both
unseen images and tasks (blue).

“warm up the pan” should have the same predicted position).
As our model was trained on a variety of rephrasings, we
can expect it to handle this language variation at test time as
well. To examine the stability under rephrasing, we generated
new synonymous phrases for each task in our testing set, and
measure the stability of our prediction over these phrases as
the average standard deviation of the predicted position for
each rephrasing. We test rephrasing both with the language
model used in training, and two other LLMs not seen in
training (LLAMA-3 8B [43], and GEMMA-1.1 2B [44]).
In all cases, our model was more stable than the baseline
(Table [[TI), with only a small amount of variation in predicted
positions for different phrasings.

D. Per Scene Fine-tuning

When our model is applied on new environments sub-
stantially different from those seen in the training data the
quality of the results falls to below that of the baseline. This
is expected in that our approach only has access to a single
image with a limited field-of-view, meaning that it is forced
to guess much of the scene context based only on what is
a typical kitchen layout whereas the baseline has access to
ground-truth labeled data for every task of every frame in
the scene. While we expect training on larger collections of
scenes similar to those in testing would somewhat improve
generalizing to new scenes, in practice there is too large a
degree of variety in environments to reliably produce high-
quality predictions of the entire scene from a single image.

A more practical approach is to fine-tune our trained model
based on short demonstrations in the new environment.
Surprisingly, only a single demonstration is needed to signifi-

LLM Baseline Ours
GPT-4 0.19m 0.12m
LLAMA 3 0.18m 0.13m
Gemma 1.1 0.23m 0.16m

TABLE III: Rephrasing Stability



Fig. 5: Trajectory to “Heat the Food” (stove highlighted).

cantly outperform the baseline. In fact, across three different
kitchens unseen in training, adding a single demonstration
of several tasks from one activity halves the error on unseen
tasks within the same activity as shown in Table [[V]
Importantly, we find that fine-tuning only the affordance
head A results in nearly equal performance gain compared
to fine tuning both A and FEy. This allows fine-tuning of
the deployed model to happen on commodity GPUs, as
optimizing A requires significantly less memory than Ey .

UMN-Cdr | UMN-Ddr | SFU-Cdp |
Baseline 0.28+0.3m 0.34+0.5m 0.69 +0.4m
Ours (base) 0.55+0.3m 0.70+0.3m 1.05+0.5m
Ours (FT A) 0.20+£0.2m 0.31+£0.4m 0.45+0.3m
Ours (FT all) 0.18+0.2m 0.26 +£0.3m 0.39+0.3m

TABLE IV: Fine-tuning on demonstrations in new scenes.

VI. NAVIGATION APPLICATIONS
A. EgoCentric Robot Navigation

To characterize the ability of our system to support task-
based robot navigation, we collected a new dataset of images
from one of the physical environments seen in training.
We then used a custom simulator to allow a robot to
navigate based on these newly collected images to positions
appropriate for new tasks unseen in training. We collected
these images using an Aria camera [45] as in training, and
based the simulation on the Fetch robot [46] as it has similar
physical affordance to humans.

An example navigation is shown in Figure |5} Here a robot
is given a new view (shown in the inset bubble) and asked
to navigate to the task “Heat the Food’. Given this single
egocentric robot view, the robot is able to predict the tasks’
location. A navigation mesh of estimated free space is used
to avoid collision during motion.

B. Task Obstacles

In shared robot-human environments, it can be important
for a robot to proactively avoid regions where a person may
need to be be while doing a set of tasks. We can use the

Fig. 6: Task Obstacles predicted across two task-sets. (left)
“Preheat the oil, and wash the dishes” and (right) “Get dishes from
the cabinet, and serve dinner.”

Algorithm 1: Task Obstacle Generation

1 Load A .= Ey, E, Ay,

2 Given Leyrents Tset> Tbound

3 distributions = A (Tser, Leurrent)

4 regions = [region(D, Tpound) for D in distributions ]
5

6

points = [discretize(r) for r in regions ]
task_obstacle = convex_hull(points)

trained network to define a Task Obstacle covering a set of
locations a robot should avoid while a person is doing a set
of related tasks as detailed in Algorithm |l| For a given set
of tasks a person may do, we first bound a safety radius of
Obound Standard deviations around the predicted task regions
and then encompass the entire set of bounded regions by
their convex hull. The resulting task obstacle contains both
the likely regions a person would be in during tasks and
the areas they will likely travel between tasks, allowing a
robot to plan accordingly. Figure [6] shows examples of task

obstacles.
VII. DISCUSSION

We have introduced a new framework to predict spa-
tial affordances of where people perform tasks within a
robot’s environment. Our system is trained on egocentric
video demonstrations and shows generalizability to new tasks
described in natural language

Limitations & Future Work Though our approach shows
generalization to new tasks and novel viewpoints, this gen-
eralization is limited to scenes very similar to those seen at
train time. While fine-tuning on demonstrations in the new
environments helps, it still requires new training cycles which
could be inconvenient in a deployed system. This limitation
could be alleviated via online learning where the model is
continuously updated based on live observations. Likewise,
the affordances from human demonstrations may not map
one-to-one with various types of robots, and online learning
or other approaches could be used to adapt between the robot
and the demonstrations. Another important limitation of our
work is that all examples were taken from cooking activities
in kitchens, and more environments should be considered.
Lastly, we currently assume each task region is approximated
by a unimodal distribution. In the future, we would like to
explore alternative forms of spatial affordance prediction, for
example predicting heatmaps, or full-body poses.
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